@��B�d�%�����O4��
R,�.�����ny[Z�|*���rt�9m���N�)퍇D։�ecٳI�S��b�?�cka^ڦ�D�_C�oE�c��k��a���ڝB`k�I�]&\S]H�&�����m�\!���6� k������"M
�b�=w
�[� g(
stream xڅVKs�0��Wp��5�:6}M;=���A٨�@%O��� 113 0 obj
<>stream
/Resources 10 0 R %���� 30 0 obj << [� L�&(�,1[Dwd��%q • Neural Networks Basics • Convolutional Neural Network • Applications in CV Tasks • Tools and Libraries • Bibliography • Author Biographies A Guide to Convolutional Neural Networks for Computer Vision Salman Khan, Data61-CSIRO and Australian National University Hossein Rahmani, University of Western Australia 0000008540 00000 n
<< /S /GoTo /D [6 0 R /Fit ] >> A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classication Ye Zhang Dept. %PDF-1.5 stream >> endobj /Subtype /Form /PTEX.PageNumber 1 /Length 931 endstream /Filter /FlateDecode 0000004227 00000 n
Convolutional neural networks are usually composed by a set of layers that can be grouped by their functionalities. 0000001541 00000 n
0000029814 00000 n
This property is due to the constrained architecture2 of convolutional neural networks which is specific to input for which discrete convolution is defined, such as images. 0000000016 00000 n
5 0 obj H���Qo�0���+��ccA���Lj�*�^�iB�U,�d1�{�_ߵɪ�ʢj�0[�|ǾEs?k�͂�|� Y6_�@����Z��%��.H�S��2I�ڑ`��ؓ[��F�`}(�Gi�Gzn��J��E:���/��JP� /Parent 17 0 R
endstream
endobj
91 0 obj
<>stream
�9e9���3j�������@��pF��j��tI3��Ob�hJ���4e��B�K�C��9�(��;��C����5v����~ �����*��i�Md��P��*C�����+ztiD�pR1zR����n|�r)*rMR�S�����.��g ���4����.�xѸ�Q1q)P�C��A�����.��}��=؝�gd���� endstream
endobj
112 0 obj
<>/Filter/FlateDecode/Index[5 74]/Length 22/Size 79/Type/XRef/W[1 1 1]>>stream
H�Ē�J�0����2��M���Mp�\� ��ʚ��{{��-������/�#p�[@Τ /FormType 1 /Font << /F53 23 0 R /F54 24 0 R /F55 25 0 R /F58 26 0 R >> /Length 360 >> 0000025374 00000 n
stream xڍR�j�0��+t�!VV+ˏc�4%!�|kzP�14r�8��W����"�]�v�3B�2ϐ��i��rK �IJ���! /ProcSet [ /PDF /Text ]
%���� H�|�Qo�0����h�A0`�HU�5��&�/C{Y����X56�M����i�HE�;������{�TO�?�J����y��2 11 0 obj << 0000014518 00000 n
0000005368 00000 n
0000013755 00000 n
6 0 obj << ����;�>�F 0000041216 00000 n
22 0 obj << Recently, convolutional neural networks (CNNs) have been shown to outperform the standard fully connected deep neural networks within the hybrid deep neural network / … ;���ز�a������#|�3nG�� L��}��Q"ziv�f�pEy'���ێ_vɤ�?>���9�
tu(�(�g��b*P1���` �B~
stream /Type /XObject 2012 was the first year that neural nets grew to prominence as Alex Krizhevsky used them to win that year’s ImageNet competition (basically, the annual Olympics of computer vision), dropping the classification error record from 26% to 15%, an astounding improvement at the time.Ever s… Menu 24 APRIL 2018 / #MACHINE LEARNING An intuitive guide to Convolutional Neural /Parent 27 0 R
convolutional neural networks can be trained more easily using traditional methods1.